West Bengal State University
 B.A./B.Sc./B.Com. (Honours, Major, General) Examinations, 2012 Part - II

CHEMISTRY - HONOURS
 Paper - IV A

Duration : 2 Hours

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Answer any three questions taking one question from each Unit.
UNIT - I

1. a) Determine whether the following functions are acceptable or not as a s function over the indicated intervals :
i) $\psi=\sin ^{-1} x(-1,1)$
ii) $\psi=e^{-x}(0, \infty)$
iii) $\psi=e^{-x^{2}}(-\infty, \infty)$
b) Find the average distance [$\langle r\rangle$] of the electron from the nucleus of $1 s$ statt a H-atom. [Given, $\psi_{1 s}=\left(\frac{1}{\pi a_{o}^{3}}\right)^{\frac{1}{2}} e^{-\frac{r}{a_{o}}}$]
c) Calculate the de Broglie wavelength for an electron ($m_{e}=9 \cdot 1 \times 10^{-31} \mathrm{~kg}$) havi kinetic energy as 13.6 eV . (Given electronic charge $=1.6 \times 10^{-19}$ coulomb $)$.
d) Find the value of the commutator $\left[\hat{x}, \hat{p}_{x}\right]$.
e) What is photoelectric effect ? Draw a plot of kinetic energy for the eject photoelectrons versus frequency of the incident radiation in a photoelect experiment with three different metals. What inference regarding physiif quantities may be drawn from the plot?
2. a) The wave function for the state of lowest energy of a one-dimensional harmonic oscillator is $\psi=A e^{-B x^{2}}$, where A is normalisation constant and $B=\frac{1}{2 h}(\mu k)^{\frac{1}{2}}$. The potential energy of the oscillator $=\frac{1}{2} k x^{2}$. Write the Schrödinger equation for the system and hence show that the total energy, E of the lowest state is $\frac{1}{2} h \gamma$, where, $\gamma=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}$ and $h=\frac{h}{2 \pi}$.
b) If ψ_{1} and ψ_{2} are two eigenfunctions of a quantum mechanical operation with same eigenvalue a, prove that any linear combination $c_{1} \psi_{1}+c_{2} \psi_{2}$ is also an eigenfunction with the same eigenvalue.
c) An operator (A) is defined as: $A=x \frac{\mathrm{~d}}{\mathrm{~d} x}$. Find A^{2}.
d) State Heisenberg uncertainty principle.

What is the uncertainty in the position of a bullet of 4 gm that is known to have a speed between $380.0001 \mathrm{~ms}^{-1}$ and $380.0000 \mathrm{~ms}^{-1}$?
e) Show that the function $\psi=A \sin \frac{n \pi x}{L}$ is an eigenfunction of the energy operator for a particle in a one-dimensional box and hence find its energy. Calculate the average momentum of the particle in this state.

```
UNIT - II
```

3. a) Show that $\left(\frac{\partial \mu_{i}}{\partial T}\right)_{P}=-\bar{S}_{i}$.
b) Starting from the Van't Hoff equation for a solid-vapour equilibrium, arrive at the Clausius-Clapeyron equation.
c) Calculate the ionic strength of a solution obtained by mixing aqueous solutions of 50 ml of $0.02(\mathrm{M}) \mathrm{AlCl}_{3}, 25 \mathrm{ml}$ of $0.04(\mathrm{M}) \mathrm{K}_{2} \mathrm{SO}_{4}$ and 50 ml of $0.02(\mathrm{M})$ urea at $25^{\circ} \mathrm{C}$.
d) For the cell $\mathrm{Zn}\left|\mathrm{ZnCl}_{2}(m=0 \cdot 1)\right| \mathrm{AgCl} \mid \mathrm{Ag}$, write down the cell reaction and find out $E_{\text {cell }}^{\circ}, E_{\text {cell }}$ and ΔG at $25^{\circ} \mathrm{C}$. I Given $E_{{\mathrm{Zn} \mid \mathrm{Zn}^{++}}_{\circ}^{\circ}=0.776 \mathrm{~V} \text { and }, ~}^{\text {a }}$ $E_{\mathrm{Cl}^{-}, \mathrm{AgCl} \mid \mathrm{Ag}}^{\circ}=0.222 \mathrm{~V} \mathrm{]}$
e) When N_{2} and H_{2} in the ratio 1:3 are allowed to react at 100 atm and $200^{\circ} \mathrm{C}$, was found that the conversion to NH_{3} was 25% of original volume. Calculate for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$.
4. a) State Debye-Huckel limiting law. Show graphically the nature of variation $\log \gamma_{ \pm}$vs square-root of ionic strength for $1-1$ (e.g. $\mathrm{NaCl}, \mathrm{KCl} \mathrm{etc),}. \mathrm{2-1} \mathrm{and} \mathrm{(1-}$ type electrolyte in aqueous solution. In which solution is the law applicabl better ?
b) The emf of the concentration cell with transferenc pt ; $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{HCl}(a \pm=0.009048): \mathrm{HCl}(a \pm=0.01751), \mathrm{H}_{2}(1 \mathrm{~atm}) ; \mathrm{pt}$ 0.02802 V at $25^{\circ} \mathrm{C}$. The emf of the corresponding cell without transference 0.01696 V . Calculate the liquid junction potential and the transference numbe of H^{+}ion.
c) Discuss the physicochemical principle involved in the determination of pH of a aqueous solution by using a quinhydrone electrode.
d) The standard reduction potentials for $\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} ; \mathrm{pt}$ and $\mathrm{Sn}^{4+}, \mathrm{Sn}^{2+}$, pt at 25° are respectively 0.77 V and 0.15 V . Set up the cell, write down the cell reaction and calculate the equilibrium constant of the reaction occurring in the cell.

UNIT - III

5. a) Define the terms 'ionic mobility' and 'transference number' of an ion.

In a moving boundary experiment with a 0.011 (N) HCl solution, a current 11.5 milliamps moved the boundary through a distance of 7.5 cms in 12 min The radius of the tube is 5 mm . Calculate transport no. of H^{+}.
b) Explain the concentration dependence of equivalent conductance of a stror electrolyte. Draw and explain qualitatively the equivalent conductance versi square root of concentration plot for a weak electrolyte.
c) Define work of cohesion in a liquid (A or B) and work of adhesion between tv immiscible liquids (A and B). How do they determine spreading of ' A ' on ' B '?
d) Consider two liquids A and B, such that A has half the surface tension ar twice the density of B. If liquid A rises to a height of 2.0 cm in a capillary, wh will be the height to which liquid B will rise in the same capillary ?
6. a) How does the viscous property of a liquid arise ?
b) What is laminar flow of a liquid ? How one can characterize a liquid flow as turbulent or laminar ?
c) The surface tension of a liquid increases as the temperature is lowered. Explain.
d) The resistance of a cell with $0.02(\mathrm{~N}) \mathrm{KCl}$ at $18^{\circ} \mathrm{C}$ is 17.6 ohms and filled with $0 \cdot 1(\mathrm{~N}) \mathrm{CH}_{3} \mathrm{COOH}$ is 92 ohms . The specific conductance of $0.02(\mathrm{~N}) \mathrm{KCl}$ at $18^{\circ} \mathrm{C}$ is $0.0024 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$. Calculate the degree of dissociation of $0 \cdot 1(\mathrm{~N}) \mathrm{CH}_{3} \mathrm{COOH}$ at $18^{\circ} \mathrm{C}$.
[Given $\lambda_{\mathrm{H}^{+}}^{\circ}=315 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$ and $\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}=35 \mathrm{ohm}^{-1} \mathrm{~cm}^{2}$]
e) Depict with explanation the nature of conductometric titration curve of oxalic acid versus NaOH .
f) The conductance of $0 \cdot 1 \quad(\mathrm{~N})$ aqueous solution of KCl is measured in two conductivity cells with different cell constant values and the values of specific conductance and equivalent conductance are calculated. State with reasons whether the values will be same or different.

